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The bosonic single-impurity Anderson model �B-SIAM� is studied to understand the local dynamics of an
atomic quantum dot �AQD� coupled to a Bose-Einstein condensation �BEC� state, which can be implemented
to probe the entanglement and the decoherence of a macroscopic condensate. Our recent approach of the
numerical renormalization-group calculation for the B-SIAM revealed a zero-temperature phase diagram,
where a Mott phase with local depletion of normal particles is separated from a BEC phase with enhanced
density of the condensate. As an extension of the previous work, we present the calculations of the local
dynamical quantities of the B-SIAM which reinforce our understanding of the physics in the Mott and the BEC
phases.
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I. INTRODUCTION

The observation of the Bose-Einstein condensation �BEC�
in ultracold, atomic gases has greatly stimulated research on
the properties of this fascinating quantum state of matter.1

A particular interest lies in the controlled manipulation of
the coherence and the entanglement of the BEC state,2–9

which provide the basis of applications such as quantum
computing and quantum communications.10 As an example,
a different scheme of performing quantum dense coding11

and teleportation12 was proposed using the spatial-mode en-
tanglement of a single massive boson coupled to a BEC
reservoir.4,5 Here one considers a system of two coupled
tightly confined potentials, each of which forms one of the
spatial modes, A and B. In order for the full dense coding
protocol to work, A and B have to share a common reference
frame with which they can exchange particles. A BEC con-
sisting of an indefinite number of particles fulfills this role13

and the coherent control of the BEC state is essential to let a
signal between A and B be phase locked.

On the other hand, there have been extensive studies of
decoherence, a process of loosing quantum superpositions
due to entanglement between a microscopic system and its
environment.14 The decoherence mechanism is crucial to un-
derstand the transition between quantum and classical
systems15–17 in a sense that quantum superposition between
distinct states of macroscopic systems is suppressed by the
decoherence process. However, the environmental effects14,18

make it difficult to probe of the decoherence of macroscopic
system directly. As an alternative way, one can use the cou-
pling of a microscopic system, such as an atomic quantum
dot, to a mesoscopic or macroscopic system to probe the
decoherence of the latter. There have been various proposals
on the single-atom-aided probe of the decoherence of a BEC
�Refs. 19–21� whereas experimental attempts to build the
hybridized systems show rather slow progress and, so far,
there is no direct laboratory realization of such systems.
There are quite a few experiments to investigate inelastic
collision processes between a single trapped ion and a Bose
Einstein condensate of neutral atoms22,23 but, in this case, the

local trap containing a charged ion provides a polarization
potential rather than an additional atomic level with on-site
interaction.

In the theoretical schemes above, a BEC state is repre-
sented as the Bose-field operator, �̂c�x�� �̂�x�1/2e−i�̂�x� with
the density �̂�x� and the phase �̂�x� of the condensate, of
which the only available excitations at low energies are
phonons with linear dispersion. However, the excitations of a
BEC state is phononlike only for wavelengths larger than the
healing length �, where the healing length � is defined as the
distance over which the condensate wave function grows
from zero to the bulk value. In general, the strong collisional
interaction in the atomic quantum dot �AQD� can locally
break a BEC state to bring up the excitations of normal par-
ticles inside of the dot. The bosonic single-impurity Ander-
son model �B-SIAM� �Ref. 24� is proposed to describe the
normal excitations in the AQD as well as the condensate
part.

Another motivation for studying the B-SIAM comes from
a treatment of the Bose-Hubbard model within the dynamical
mean-field theory �DMFT�.25,26 The DMFT is an exact
theory in infinite spatial dimensions25 but, as an approxima-
tion for finite dimensional system, it was successful to pro-
vide comprehensive understanding about strongly correlated
fermion systems. Recently, a new framework of the bosonic
DMFT �B-DMFT� was proposed by Byczuk and Vollhardt27

in order to extend the idea of the DMFT to correlated lattice
bosons and mixtures of bosons and fermions on a lattice.28 In
contrast to the fermionic DMFT, the lattice model for bosons
is mapped into a single-impurity problem with two species of
bath spectra, those from the condensate bosons and those
from the normal bosons, each of which should be self-
consistently determined. The resulting effective bosonic im-
purity model has been solved by exact diagonalization
method.29,30 Results have been presented for various phases
at finite temperatures and compared to other theories and the
experiments.

The structure of the effective impurity model in the
B-DMFT is reduced to the B-SIAM in the absence of the
bath spectrum from the condensate bosons, which is the case
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in the Mott insulating �MI� phase. On the basis of the current
work, it will be possible to perform numerical renormaliza-
tion group �NRG� calculations for the B-SIAM with a self-
consistently determined bath and investigate transitions be-
tween the superfluid and MI phases from the side of MI
phase.

The most part in this paper is devoted to discuss the im-
purity quantum phase transitions of the B-SIAM in terms of
the local spectral density. In addition, we present in detail the
implementation of the bosonic NRG for the B-SIAM to dis-
cuss various strategies to setup the iteration scheme for the
bosonic NRG.

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the B-SIAM, explaining the differences
to the spin-boson model that has been widely used to study
the AQD coupled to a superfluid Bose-Einstein condensate.21

In Sec. III, the formulation of the NRG for the B-SIAM is
described in detail. In Sec. IV, we discuss the impurity quan-
tum phase transition of the B-SIAM and explain how the
Mott and the BEC phases are discerned in the NRG method.
In Sec. V, we turn to the calculation of the local spectral
density to discuss the different dynamical properties in Mott
and BEC phases. Section VI is a conclusion. We put some
technical details in appendices.

II. MODEL HAMILTONIAN

The spin-boson model15 has been widely used for inves-
tigating the physical properties of an AQD coupled to a
bosonic reservoir.4,5,20,21 In Sec. II A, we summarize the
work by Recati et al.,21 where the particle exchange between
the AQD and the BEC reservoirs has been discussed in terms
of the spin-boson model. The B-SIAM model is proposed to
relax the theoretical constrains in the spin-boson model and
describes the density fluctuation of the coherent state origi-
nated from the collisional interaction in the AQD. In Sec.
II B, we discuss the basic setup of the B-SIAM and make a
comparison with the spin-boson model.

A. Atomic quantum dot coupled to a superfluid
Bose-Einstein condensate

The particle-exchange mechanism between an AQD and a
BEC reservoir was initially proposed by Recati et al.21 The
Hamiltonian is written as

H = HB + HA + HAB, �1�

where HB and HA correspond the energy of the BEC reser-
voir and the AQD, respectively. The third term HAB describes
the Raman coupling between the AQD and the BEC.

The first term HB describes the dynamics of the BEC res-
ervoir. Here the reservoir atoms are assumed to form a co-
herent matter wave, held in a shallow trapping potential
VB�x� as illustrated in Fig. 1. The wave function of the co-

herent state is represented as the Bose-field operator, �̂B�x�
� �̂�x�1/2e−i�̂�x�, with the density �̂�x� and the phase �̂�x� of
the condensate.

At very low temperature, the coherent matter wave is re-
garded as superfluid Bose liquid with an equilibrium liquid

density �B, of which the only available excitations are then
phonons of low energy �q=vs�q� with sound velocity vs. In
this case, the dynamics of the coherent matter wave is de-
scribed by a hydrodynamic Hamiltonian31

HB =
1

2
� dx��2

m
�B���̂�x��2 +

mvs
2

�B
�̂2�x�� , �2�

where �B is the density of the superfluid fraction and �̂�x� is

the density fluctuation operator �̂�x�= �̂B�x�−�B, a canonical
conjugate of the superfluid phase �̂�x�. The quadratic Hamil-
tonian in Eq. �2� can be written in terms of standard phonon
operators bq as

HB = �vs�
q

�q�bq
†bq �3�

via the following transformation:21

�̂�x� = i�
q
	 mvs

2�qV�B
	1/2

eiq·x�bq − b−q
† � ,

�̂�x� = �
q
	 ��Bq

2vsVm
	1/2

eiq·x�bq + b−q
† � . �4�

Here V is the sample volume.
The second term HA corresponds to the on-site energy of

the AQD. The AQD is formed by trapping atoms in an addi-
tional tightly confining potential VA�x� as shown in Fig. 1.
Here, one only considers the lowest vibrational mode in the
AQD assuming that other higher vibrational modes are off
resonant due to large detuning. The collisional interaction of
the atoms trapped in the tightly confining potential VA�x� is
described by a coupling parameter gAA=4�aAA�2 /m with
scattering lengths aAA and atomic mass m. The strength of
the collisional interaction between the internal states in the
AQD and the coherent state in the BEC reservoir is given as

FIG. 1. �Color online� Schematic setup of an atomic quantum
dot coupled to a superfluid atomic reservoir. The noninteracting
bose particles, denoted by the operator bk

�†�, are confined in a shal-
low trap VB�x� and, at zero temperature, condense at the lowest
vibrational mode to form a BEC state �B�x� �depicted as a broad
wave packet�. The creational operator b† add an atom, �depicted by
balls� in the tightly confining potential VA�x�, where macroscopic
condensation is prevented due to the on-site repulsion U. The atoms
in VB�x� and VA�x� are coupled via a Raman transition with effec-
tive Rabi frequency 	. The confining potential VA�x� and VB�x� are
in all three directions with spherical symmetry.
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gAB=4�aAB�2 /m. One assumes that atoms in the reservoir
are noninteracting. Thus the on-site interaction at the AQD
site is given as

HA = �− �
 + gAB� dx��b�x��2�̂B�x��b̂†b̂ +
UAA

2
b̂†b̂†b̂b̂ ,

�5�

where 
 is the detuning parameter and �A�x� is the wave
function of the lowest vibrational mode of the AQD. The
on-site repulsion in the AQD is given by the parameter
UAA�gAA / lA

3 with lA the size of the ground-state wave func-
tion �A�x�.

The last term HAB in Eq. �1� is the laser-induced hybrid-
ization between particles in the AQD and the BEC reservoirs
with effective Rabi frequency 	

HAB = �	� dx
�̂B�x��̂A
†�x� + H.c.� . �6�

The operator �̂A
†�x� creates an atom in the AQD and the

operator �̂B�x� is the annihilation operator for a reservoir
atom at the position x.

The Hamiltonian in Eq. �1� can be reduced to the spin-
boson Hamiltonian15 under the following conditions. First,
one considers the collisional blockade limit of large on-site
interaction UAA, where only states with occupations nA=0
and 1 in the AQD participate in the dynamics. In this case the
internal state of the AQD is described by a pseudospin 1/2
with the spin-up or spin-down state corresponding to occu-
pation by a single or by no atom in the AQD. Using the Pauli

matrix notation, the AQD occupation operator b̂†b̂ is then

replaced by �1+�z� /2 while b̂†→�+.
For the BEC state, one assumes that the number of con-

densate atoms inside the confinement �or the AQD� is much
larger than 1, nB=�BlA

3 
1, i.e., the size of the spatial con-
finement lA is much larger than the average interparticle
spacing in the BEC reservoir. Taking the long-wavelength
approximation, �q�lA�1, the phonon field operators in HA
and HAB are replaced by their values at x=0. Further, ne-
glecting the density fluctuations in the Raman coupling in
Eq. �6�, the Hamiltonian HA and HAB can be simplified to

HA + HAB = �−
�


2
+

gab

2
�̂�0���z +

��

2

�+e−i�̂�0� + H.c.� .

�7�

Here ��	nB
1/2 is an effective Rabi frequency. Eventually,

after a unitary transformation H=S−1�HA+HB+HAB�S with
S=exp�−�zi�̂�0�
, the particle-exchange mechanism be-
tween a confined boson in AQD and a boson in the BEC
reservoir can be described by the spin-boson Hamiltonian

H = −
��

2
�x + �

q
��qbq

†bq + �− 
 + �
q

�q�bq + bq
†����z

2
.

�8�

Here the collisional interactions and those arising from
the coupling of the Rabi term to the condensate phase add

coherently in the amplitudes of the phonon coupling

�q = 	m�qvs
3

2V�B
	1/2�gAB�B

mvs
2 − 1� . �9�

B. Bosonic single-impurity Anderson model

The Hamiltonian of the B-SIAM �Ref. 24� is written as

H = �b†b +
U

2
b†b�b†b − 1� + �

k

�kbk
†bk + 	�

k

�b†bk + bk
†b� ,

�10�

where b and b† are annihilation and creation operators obey-
ing bosonic canonical commutation relations and correspond
to bosons within a tight trapped potential VA�x�, i.e., an
AQD. The operators bk and bk

† are annihilation and creation
operators corresponding to noninteracting bosons confined in
a shallow potential VB�x�. Figure 1 shows the schematic
setup.

The energy of the AQD is given by � and U is the local
repulsion energy when two or more bosons occupy the dot
system. The two parameters depend on the strength of the
collisional interaction g��=4�a���2 /m with scattering
length a�� �� ,�=A or B� and the Raman detuning 
 as dis-
cussed in Sec. II A.

The third term in Eq. �10� is the kinetic energy of nonin-
teracting bosons confined in the shallow potential VB�x�.
Here we emphasize that the origin of the bosonic excitations
in the B-SIAM is no more restricted to the phonons of the
condensate wave function in the lowest vibrational mode in
VB�x�. Instead, it involves the excited particles to arbitrary
higher vibrational modes in the shallow trapping potential
VB�x�. The number of the vibrational modes in VB�x� be-
comes infinite as the curvature of the trapping potential ap-
proaches to zero. In this case, the shallow trapping potential
VB�x� containing free bosons is regarded as an infinite size of
a bosonic bath, of which the lowest vibrational mode has
zero energy.

The last term in Eq. �10� is the laser-induced hybridiza-
tion between particles in the AQD and the bosonic bath with
effective Rabi frequency 	. In analogy to the fermionic
SIAM the dispersion relation is determined by a hybridiza-
tion function whose imaginary part, so-called bath spectral
function, is given by

J��� = �	2�
k


�� − �k� . �11�

In the following we are interested in systems with gapless
bath spectral functions and in low-energy properties. There-
fore, we use a model spectral function in the form

J��� = �	2�1 + s��c
−1−s�s���c − �� , �12�

where ��x� is a steplike theta function with a cut-off param-
eter �c, which yields the total spectral weight �0

�cJ���d�
=�	2. Note that the choice �c=1 sets the energy units here-
after. The exponent s characterizes how the bath spectral
functions behave in the low-energy regime.
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Contrary to the spin-boson model in Ref. 21, the B-SIAM
can consider a case where the strong Raman coupling 	
induces large density fluctuations around the AQD site. The
Raman coupling term in Eq. �10� imposes the spatial dis-
placement to the harmonic oscillators in the bath, which, in
consequence, increases the occupation of each vibrational
mode. The density of the condensate in the lowest vibrational
mode increases accordingly. Further, with Rabi coupling 	
�U, we go beyond the collisional blockade limit so that an
arbitrary number of bosons can occupy the AQD site to make
wide temporal and spatial fluctuations.

It is known that in the strong-coupling regime the local
spectrum can contain a bound or/and antibound one-particle
states in addition to the continuum.32 In this paper we select
the coupling strength 	 such that these extra states do not
occur, which is the only restriction for the coupling strength
	.

As a final remark we note that the B-SIAM Hamiltonian
conserves the total number of bosons. This is in contrast to
the spin-boson model,33,34 where the bath contains excited
phonons, the number of which is not conserved.

III. BOSONIC NRG

A. Mapping onto semi-infinite chain

In this section we describe the NRG method for con-
served bosons, which is used to solve the B-SIAM Eq. �10�,
introduced in the previous section. Details of NRG for
bosons are presented in the appendices. This method is an
adoption of the NRG from Refs. 33 and 34 to deal with
bosons with a conserved number of particles.

As in the other NRG approaches,35 the frequency range

0,�c� of the bosonic bath spectral function J��� is divided
into intervals 
�c�

−�n+1� ,�c�
−n�, where n=0,1 ,2 , . . . and

��1 is an NRG discretization parameter. The limit �→1
corresponds to the exact case. Within each of these intervals
the spectral function J��c�

−�n+1�����c�
−n� is approxi-

mated by its mean value

J̄n �
�

�c�−�n+1�

�c�−n

J���d�

��c�
−n − �c�

−�n+1��
. �13�

Next, following the same steps as in the spin-boson model in
Refs. 33 and 34, we obtain a discretized version of Hamil-
tonian �10�,

H = �b†b +
U

2
b†b�b†b − 1� + �

n=0

�

�nbn
†bn + �

n=0

�

Vnb†bn+1 + H.c.

�14�

Here the new coefficients Vn and �n are defined on a discrete
frequency grid and new bath bosonic operators labeled by
discrete quantum numbers n.

Now, this discretized model in Eq. �14� is mapped onto a
semi-infinite chain33,34 and we obtain the following Hamil-
tonian:

H = �b†b +
U

2
b†b�b†b − 1� + V�b†b̄0 + b̄0

†b� + �
m=0

�

�̄mb̄m
† b̄m

+ �
m=0

�

t̄m�b̄m
† b̄m+1 + b̄m+1

† b̄m� . �15�

Note that this semi-infinite chain form of the impurity model
is the result of various transformations of the original model
for which one can imagine a variety of geometries �such as
the impurity being placed in the middle of a chain�. As long
as the bath degrees of freedom are noninteracting, all these
geometries can be mapped onto Eq. �15�. The actual geom-
etry is encoded into the bath spectral function J��� which
determines the coefficients �̄m and t̄m in Eq. �15�. The param-
eters �̄m and t̄m, which are obtained as solutions of recursive
relations in Refs. 33 and 34, fall off exponentially with the
distance from the impurity, i.e., t̄m , �̄m��−m.

Hamiltonian �15� cannot be diagonalized numerically for
the semi-infinite chain. Therefore, we need to truncate it at
m=M −2, which corresponds to taking M sites, including the
impurity site, in the chain. Since the Hamiltonian parameters
t̄m , �̄m decay exponentially with m, this truncation is justified
at large M. The Hamiltonian diagonalized numerically has
the form

HM = �b†b +
U

2
b†b�b†b − 1� + V�b†b̄0 + b̄0

†b� + �
m=0

M−2

�̄mb̄m
† b̄m

+ �
m=0

M−3

t̄m�b̄m
† b̄m+1 + b̄m+1

† b̄m� . �16�

Hamiltonian �16� commutes with the number operator

NM = b†b + �
m=0

M−2

b̄m
† b̄m. �17�

Hence, the eigenstates of HM are also the eigenstates of NM,
so they are labeled by the corresponding quantum number N.
The Hilbert space of all states with the same N is denoted by
HN. The dimension of each Hilbert space HN with a given M
is

DN =
�M − 1 + N�!
�M − 1�!N!

. �18�

Unfortunately, for large N and M the Hilbert space dimen-
sion is so large that direct diagonalization methods are not
efficient. Therefore, Hamiltonian �16� is diagonalized itera-
tively as is discussed next.

B. Iterative diagonalization

At the beginning for small M and N such that the Hilbert
space dimension DN is less than typically few thousands,
which depends on the computing facility, we perform exact
diagonalization of Hamiltonian �16� for a given M and all
possible N such that
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N = 0,1,2, . . . ,Nmax, �19�

where Nmax is a cutoff for a number of particles. The trunca-
tion of the possible particle numbers, which is an approxi-
mation, is a necessary to make a computation feasible. As we
will see later if the cutoff Nmax is large enough then it does
not affect obtained results.

Having diagonalized the Hamiltonian HM for a given M
we increase the system size by adding one more site to the
chain. Then we diagonalize the Hamiltonian HM+1 which has
the form

HM+1 = HM + �̄M−1b̄M−1
† b̄M−1 + t̄M−2�b̄M−2

† b̄M−1 + b̄M−1
† b̄M−2� .

�20�

If it turns out that the dimension of the Hilbert space is too
large now, we need to construct an effective representation of
the low-energy eigenstates while M increases. This is done
iteratively as is described below.

We keep the dimension of the Hilbert space constant by
taking only the low-energy eigenstates. However, to be able
to make a direct comparison of the spectra while M increases
we need to scale the M +1 site Hamiltonian as follows:

HM+1 = �HM + �M−1
�̄M−1b̄M−1
† b̄M−1

+ t̄M−2�b̄M−2
† b̄M−1 + b̄M−1

† b̄M−2�� , �21�

where we keep the same symbol for the Hamiltonian. All
eigenvalues of HM for all 0�N�Nmax are sorted in an as-
cending way and the Ns eigenstates �N ,rN�M with the lowest
eigenvalues are used in diagonalizing HM+1. Explicitly, we
take into account such states that

HM�N,rN�M = ErN,M�N��N,rN�M �22�

with rN=1, . . . ,ns
�N�, where ns

�N� is the number of N-particle
states with the lowest eigenvalues ErN,M�N� in each Hilbert
space HN.36 The dimension of the Hilbert space Ns is given
by the summation of ns

�N�,

Ns = �
N=0

Nmax

ns
�N�, �23�

and optimized to perform the computation feasible.37

In the Hilbert space of the HM+1 Hamiltonian, the
N-particle states are given by

��N,R�M+1
 = ��N − k,rN−k�M � �k�
k=0,. . .,N, �24�

where

�k� =
�b̄M−1

† �k

�k!
�0� �25�

is the k-particle state on the M −1 site in the chain and �0� is
an empty �vacuum� state on this last site. In Eq. �24� the
quantum number R�rN−k means the quantum number of the
HM Hamiltonian with N−k particles. The numbers R are not
the quantum numbers labeling the eigenstates of the Hamil-
tonian HM+1. This is due to the fact that the new Hamiltonian
HM+1 does not commute with the total number of particles

NM of the previous system with the Hamiltonian HM, i.e., we
can check that 
HM+1 ,NM��0, where NM is defined in Eq.
�17�. In order to find eigenstates of HM+1 in a basis Eq. �24�
we construct the Hamiltonian matrix elements

H�R;R���M+1�N,R�HM+1�N,R��M+1 �26�

and diagonalize this matrix obtaining a set of eigenvalues
and eigenstates

�N,�N�M+1 = �
R

UN��N;R��N,R�M+1, �27�

where UN��N ;R� is an orthogonal matrix and �N are new
quantum numbers labeling an N-particle eigenstate of HM+1
with eigenvalue E�N,M+1�N�. The procedure described from
Eqs. �24�–�27� is repeated for all N=0,1 ,2 , . . . ,Nmax.

In the next iteration step we extend the system by adding
one more site to the chain and use the eigenstates Eq. �27� of
HM+1 to construct a basis of the new Hamiltonian in a way
analogous to Eq. �24�. Repeating the same procedure as de-
scribed between Eqs. �22�–�27� we obtain new eigenstates
and eigenvalues of the larger system. Further details on the
iterative diagonalization are presented in Appendix A.

We proceed iterative diagonalizations until the many-
particle spectra approach the trivial fixed point of the nonin-
teracting bosonic bath. The low-energy spectrum of Mott and
BEC phases and the structure of the fixed points are pre-
sented in Sec. IV B.

IV. ZERO-TEMPERATURE PHASE DIAGRAM

A. Overview

The zero-temperature phase diagram in Fig. 2 is calcu-
lated for fixed U=0.5�c with the parameter space spanned
by the dimensionless coupling constant �= �1+s�

2 	2 and the
impurity energy �. We choose s=0.4 as the exponent of the
power law in J��� in Eq. �12�. A similar phase diagram for

0 0.1 0.2
αωc/U

0

2

4

-ε
/U

nimp=0

nimp=1

nimp=2

nimp=3

nimp=4

0

1

2

3

4

BEC

FIG. 2. �Color online� Zero-temperature phase diagram of the
B-SIAM for bath exponent s=0.4 and fixed impurity Coulomb in-
teraction U=0.5�c. The different symbols denote the phase bound-
aries between Mott phases and the BEC phase. The Mott phases are
labeled by the number of the impurity quasiparticle, nimp. Only the
Mott phases with nimp�4 are shown. The NRG parameters are �
=2.0, Nb=10, and Ns=100.
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different bath exponents s=0.6 has been presented in Ref.
24. The phase diagram is characterized by a sequence of
lobes. We use the terminology “Mott phase” for the inside of
the lobes and “BEC phase” for the region outside of the
lobes.

The Mott and the BEC phases are distinguished by a hy-
bridized state that is formed around the AQD as illustrated in
Fig. 3. Figure 3�a� shows a BEC state of a noninteracting
bosonic bath, where all existing particles occupy the lowest
vibrational mode of the shallow potential VB�x�. In the pres-
ence of the AQD, however, particles around the AQD can be
either completely depleted 
Fig. 3�b�� or even more concen-
trated toward the local site 
Fig. 3�c��. We call the collective
excitation around the AQD as impurity quasiparticle.

In the Mott phase, the impurity quasiparticle consist of an
integer number of depleted particles 
depicted as balls in Fig.
3�b��, which are tightly trapped in VA�x�. The number of the
depleted particles is used to label the different Mott phases in
the phase diagram in Fig. 2. The other bosons contained in
VB�x� still form a BEC cloud but the local density of the
condensate vanishes in the vicinity of the AQD.

In the BEC phase 
Fig. 3�c��, the impurity-quasiparticle
forms a part of a BEC state to enhance the density of the
condensate around the AQD. The enhancement of the con-
densate density is due to the strong Raman coupling 	 and
the deep attractive potential ��0 of the AQD.

Numerical evidences for our assertions are presented in
the rest part of the paper. In Sec. IV B, we look into the
contribution of the impurity quasiparticle to the ground-state
energy. In Sec. V, the calculation of the local Green’s func-
tion is presented to show the local dynamics of normal and
condensate particles.

B. Impurity contribution to the ground-state energy

The ground-state energy of a noninteracting bosonic bath
is zero since all existing particles occupy the lowest vibra-

tional mode with zero energy. An impurity site with repulsive
interaction U, however, can deplete some particles from the
zero-energy mode and shift the ground-state energy to be
finite. In general, the nonzero ground-state energy depends
on the total number of particles �N� in the system.

Figures 4 and 5 show the N dependence of the ground-
state energy E0,M�N� in Mott and BEC phases, respectively.
The different curves are the results from different size �M� of
the systems. The ground-state energy E0,M�N� decreases until
the configuration around the AQD, �i.e., impurity quasiparti-
cle� is optimized. The occupation at the minimum point is
denoted by N�.

The minimum ground-state energy E0,M�N� at N=N� is
plotted as a function of the system size M in Fig. 6. The
minimum ground-state energy E0,M�N� at N=N� converges in
the limit M→�. Once the system converges into the large M
limit, all ground states for different N become degenerate.
Indeed, Figs. 4 and 5 show that the ground-state energy
E0,M�N� becomes almost independent of N already for M
=9.

In the thermodynamic limit �N→�, M→��, the result of
adding �or removing� one particle is to convert a state of a

FIG. 3. �Color online� �a� Reference frame: a noninteracting
BEC state, �B�x�, is confined in a shallow trapping potential VB�x�.
�b� Mott phase: the impurity quasiparticle consists of an integer
number of depleted particles, �depicted as balls�, which are tightly
trapped in VA�x�. The other bosons contained in VB�x� still form a
BEC cloud but the local density of the condensate vanishes in the
vicinity of the AQD. �c� BEC phase: the impurity quasiparticle
forms a part of a BEC state to enhance the density of the condensate
around the AQD. The confining potentials VA�x� and VB�x� are in
all three directions with spherical symmetry.
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FIG. 4. �Color online� Ground-state energy E0,M�N� vs N calcu-
lated for s=0.6, U=0.1, �=−0.36, and V=0.01. The parameters are
chosen inside of the Mott lobe labeled by 4 �Mott phase 4�. The
inset shows the position of the minimum point N=N� as a function
of M. The NRG parameters used are �=1.5 and Ns=1000.
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FIG. 5. �Color online� Ground-state energy E0,M�N� vs N calcu-
lated for s=0.6, U=0.1, �=−0.05, and V=0.4. The parameters are
chosen outside of the Mott lobes �BEC phase�. The inset shows the
position of the minimum point N=N� as a function of M. The NRG
parameters used are �=1.5 and Ns=1000.
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system of N particles into the same state of a system of N�1
particles

lim
N→�

lim
M→�

�N � 1,0�M = lim
N→�

lim
M→�

�N,0�M . �28�

Here �N ,0�M is the N-particle ground states of HM. This is
the case of a condensate consisting of a macroscopic number
of particles, i.e., a coherent state.31

The degenerate feature of the ground states in Eq. �28� is
extended to the low-lying excited states when the many-
particle spectrum reaches a fixed point. Figure 7 shows the
energy flow of the lowest lying many-particle levels En,M�N�
versus iteration number M. The parameters V, U, and � are
chosen for the system to flow into a Mott phase. Three panels
show the N-particle eigenstates for N=9, 10, and 11. The
eigenstates in the three figures flow into the same fixed point,
which is a trivial fixed point of a noninteracting bosonic
bath. It means that the dynamics of the AQD, i.e., the impu-
rity quasiparticle, is suppressed in this energy scale so that

the low-lying excitations show the dynamics of the noninter-
acting bosons that locate far from the AQD site.

Figure 8 shows the lowest lying many-particle levels in a
BEC phase. Three panels show the N-particle eigenstates for
N=26, 29, and 32, which flow into the same strong-coupling
fixed point. The level spacing in the strong-coupling fixed
point is different from the one in the noninteracting fixed
point—the reason is not clear yet.

As a last remark, we mention the conditions for numerical
convergence. We see that the energy levels start to deviate
from the strong-coupling fixed point around at the iterative
step M =20. The upturn �deviation from the fixed point� ap-
pears if the number of particles N is not large enough com-
pared to N��M�. The N� increases with increasing M �see
Fig. 9� and reaches the value N��30 at the iteration M
=20. The N-particle eigenstates flows into the same strong-
coupling fixed point only if N is larger than N�.

The quick and the slow convergence in Mott and BEC
phases, respectively, can be interpreted as following. The
system size M corresponds to the number of vibrational
modes that are taken into account in HM, i.e., the larger sys-
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FIG. 6. �Color online� The minimum of the ground-state energy
E0,M�N� at N=N� as a function of M. The solid and dashed lines
correspond to the BEC and the Mott phases, respectively. The bath
exponent is fixed to s=0.6. The NRG parameters used are �
=1.25, Nmax=40�8�, and Ns=8000�600� for a BEC �Mott� phase.
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FIG. 7. �Color online� The lowest lying many-particle levels
En,M�M−1 versus iteration number M for parameters s=0.7, V
=0.01, U=0.5, and �=−1.2 �Mott phase�. The NRG parameters
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FIG. 8. �Color online� Flow diagram of the lowest lying many-
particle levels En,M�M−1 versus iteration number M for parameters
s=0.7, V=0.4, U=0.1, and �=−0.05. The NRG parameters used are
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FIG. 9. �Color online� The quasiparticle occupation N� versus
the system size M. The data obtained for parameters s=0.7, V
=0.4, U=0.1, and �=−0.05 �BEC phase�. The NRG parameters are
�=1.25, Nmax=40, and Ns=8000.
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tem involves more vibrational modes with small energy.
From this we can conclude that the impurity quasiparticle in
a Mott phase consists of the depleted particles occupying the
higher vibrational modes in VB�x�, which can be described
by a relatively small system size. In a BEC phase, however,
the impurity quasiparticle is a part of a condensate which
consists of a macroscopic number of particles with almost
zero energy. Thus one needs a large value of N and M to
properly describe the condensate.

V. LOCAL DYNAMICS AT ZERO TEMPERATURE

The local Green’s function of the impurity model is
defined as

G�z� =
1

i
�

0

�

dteizt�
b�t�,b†�� , �29�

where b�†� is an annihilation �creation� operator for the im-
purity. The local spectral density A��� is the imaginary part
of the local Green’s function,

A��� = −
1

�
IG�� + i
� . �30�

The local spectral density in a Mott phase �Fig. 10� shows
two quasiparticle peaks that are separated by a gap, �gap
�0.2. A sharp peak at ��−0.2 is a signal of hole excitation
in the AQD. The particles trapped in the AQD show no reso-
nance with the reservoir as if they are isolated from it. In
fact, most of particles in the reservoir are immobile since
they are condensed at zero energy and make no resonance
with the particles in the AQD �Appendix B�.

The local occupation at the AQD site can be obtained by
integrating the spectral weight below the chemical potential
�=0,

nloc�T = 0� = ��
−�

�

fBE���A���d��
T=0

= 1.8875, �31�

where the Bose-Einstein distribution function fBE��� is given
as a step function at zero temperature,

lim
�→�

fBE��� = lim
�→�

1

e�� − 1
= − ��− �� �32�

with ����=1 for ��0 and ����=0 for ��0.
Creating a particle at the AQD site gives a broad peak at

positive frequency. There is no feature at �=0 
Fig. 10�c��
indicating that the BEC is locally forbidden around the AQD
site. The A��� vanishes at �=0 with a power-law behavior,

A��� � �s, � � 0, �33�

which is the same for the bath spectral function J��� in Eq.
�12�. The power-law behavior for various bath exponents s is
shown in Fig. 12�a�.

Figure 11 shows the spectral density in the BEC phase.
The spectral density in the BEC phase �Fig. 11� diverges at
�=0,

A��� � sgn������−s, �34�

where the power law corresponds to the inverse of the bath
spectral density J���, see Fig. 11�b�. The singular behavior
of A��� for various bath exponents s is shown in Fig. 12�b�.

The divergence of A��� occurs if a hybridized state is
pinned at the gapless point of the spectral function J���. To
discuss more details, let us look into the local Green’s func-
tion G�z� written as
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FIG. 10. �Color online� �a� The local spectral density of the
B-SIAM for bath exponent s=0.6 and fixed impurity Coulomb in-
teraction U=0.5�c, the onsite impurity energy �=−0.7, and the hy-
bridization V=0.15 �Mott phase 2�. The NRG parameters are �
=1.25, Nmax=3, and Ns=1000. �b� The �positive� low-frequency
part of A��� �solid line� in log-log scale. The dashed line is a guide
line for eyes showing a power-law behavior ���s, s=0.6�. �c� The
low-frequency part of A��� in linear scale. A��� vanishes at �=0.
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FIG. 11. �Color online� �a� The local spectral density of the
B-SIAM for bath exponent s=0.6 and fixed impurity Coulomb in-
teraction U=0.1�c, the on-site impurity energy �=−0.05 and V
=0.3 �BEC phase�. The NRG parameters are �=1.25, Nmax=40,
and Ns=5000. �b� The low-frequency part of �A���� as a function of
��� in log-log scale, where upper and lower curves correspond to the
positive and negative spectral densities in the first and third quad-
rants, respectively. The dashed line in the inset is a guide line for
eyes showing a power-law behavior ���−s, s=0.6�. �c� The low-
frequency part of A��� in linear scale. A��� shows two 
 peaks at
�� �0.0001. The position of two peaks approach �=0 in thermo-
dynamic limit M→� as seen in Fig. 13.
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G�z� = 
z − � − ��z��−1, �35�

where � is the energy of the impurity level �with operator
b�†�� and ��z� is the total self-energy of the impurity model.
The imaginary part of the Green’s function in Eq. �35� is
given as

I
G�z�� =
I
��z��

�R
z − � − ��z���2 + �I
��z���2 �36�

with z=�+ i0+. The actual calculation of ��z� is in progress
and will be presented in our subsequent paper. Here we as-
sume that the imaginary part of the self-energy I
��z�� fol-
lows a power-law behavior with the same exponent as the
bath spectral function J�����s

I
��z�� � �s. �37�

The singular behavior of the local spectral density A��� in
Eq. �34� can appear when the impurity bound state occurs at
�=0

R
� − � − ��� + i0+�� = 0 at � = 0. �38�

The imaginary part of the self-energy shows a power-law
behavior as assumed in Eq. �37�. In the case, the I
G�z��
becomes inverse proportional to I
��z��,

I
G�z�� �
1

I
��z��
� �−s. �39�

If the impurity bound state occurs below the chemical poten-
tial, the first term in the denominator in Eq. �36� is nonzero
at �=0, which makes I
G�z�� proportional to I
��z��
around the gapless point �=0,

I
G�z�� � I
��z�� � �s. �40�

A similar feature of A��� is observed in the pseudogap
Anderson model,38,39 where a Kondo bound state appears at
the gapless Fermi level.

Another interesting feature in the BEC phase is the finite
spectral weight at �=0 as shown in Fig. 11�c�. Figure 11�c�
shows two peaks at small frequency �0�� �0.0001 with
opposite sign of spectral weight. In the limit M→�, the
position of both peaks approaches to zero ��=0� and the
amplitude ��0�� converges to the same value �Fig. 13�. The
finite spectral weight at �=0 indicates the existence of the
condensate particles in the AQD site.

The local occupation at the AQD site can be obtained
from integrating the spectral weight below the chemical po-
tential �=0,

nloc�T = 0� = ��
−�

�

fBE���A���d��
T=0

= �0− + lim
�→0−

�
−�

�

A���d� = 4.6 + 0.22, �41�

where the Bose-Einstein distribution function fBE��� at zero
temperature is given in Eq. �32�. The first term �=4.6� in Eq.
�41� is the contribution of the condensate particles with the
zero energy whereas the second term �=0.22� is the contri-
bution of particles that are depleted from the zero-energy
state.

VI. CONCLUSION

The bosonic single-impurity Anderson model is studied to
understand the local dynamics of an atomic quantum dot
�AQD� coupled to a BEC state. The major result presented in
this paper is the calculation of the impurity Green’s function
but, in addition, considerable space is devoted to refine the
description of the Mott and the BEC phases. The local col-
lisional interaction, dominant over the Raman coupling, de-
pletes the particles around the AQD out of the condensate
�Mott phase�. Otherwise, the Raman transition makes the
density of the BEC state even more concentrated toward the
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FIG. 12. �Color online� �a� The low-frequency behavior of A���
for U=0.5�c, �=−0.7, and V=0.15 �Mott phase 2� and for various
bath exponents s=0.5, 0.6, and 0.7. �b� The low-frequency behavior
of A��� for U=0.1�c, �=−0.05, and V=0.3 �BEC phase� and for
various bath exponents s=0.5, 0.6, and 0.7. The NRG parameters
are �=1.25, Nmax=40, and Ns=5000. The dashed lines are guide
lines for eyes to show the power-law behavior. The NRG param-
eters are �=1.25, Nmax=3, and Ns=1000.
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FIG. 13. �Color online� The position ���0��� and the amplitude
���0��� of the two peaks in Fig. 11�c� depending on the size of
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local site �BEC phase�. The AQD can share a coherent phase
of the macroscopic condensate only in the BEC phase and
can be used to probe the decoherence of the BEC state.19–21

The scheme for the quantum dense coding protocol4 re-
quires two separate AQDs, both of which are coupled to the
same BEC state. In Ref. 4, it is assumed that a signal be-
tween the two AQDs is phase locked through a BEC state
with uniform density and phase. However the phase pre-
served in each AQD can depend on the position of the dots
when the AQDs make the BEC state nonuniform. In this
case, the spatial fluctuation of a BEC cloud in the presence
of two AQDs deserves of further research, for which a recent
extension of the NRG technique, computing spatial correla-
tion function for the Kondo screening cloud,40 is also appli-
cable.
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APPENDIX A: DETAILS ABOUT THE ITERATIVE
DIAGONALIZATION

Now we obtain the matrix elements in Eq. �26�,

H�R;R�� � M+1�N,R�HM+1�N,R��M+1, �A1�

where the N-particle states �N ,R�M+1 is defined in Eq. �24�.
It is straightforward to demonstrate that the diagonal ma-

trix elements of HM+1 are

H�R;R� = ER,M�N − k� + k�̄M−1. �A2�

The only nonvanishing off-diagonal elements of HM+1 are
given by

H�R�;R� = 
k�,k−1t̄M−2
�kM�N − k�,R���b̄M−2

† ��N − k,R�M

+ 
k�,k+1t̄M−2
�k + 1M�N − k�,R���b̄M−2��N − k,R�M ,

�A3�

where ��b̄M−2
�†� �� are the invariant matrix elements.

In obtaining Eq. �A3�, we have made use of the following
results:

M+1�N�,R���b̄M−1��N,R�M+1 = 
k�,k−1
�k �A4�

and

M+1�N�,R���b̄M−1
† ��N,R�M+1 = 
k�,k+1

�k + 1, �A5�

which follow from the definition of the basis set in Eq. �24�.

From Eqs. �A2� and �A3�, it is clear that we can setup the
matrix of H�R ;R�� starting with the knowledge of the previ-
ous iterative step such as the eigenenergy ER,M�N−k� and the
matrix elements

M�N − k − 1,r���b̄M−2��N − k,r�M �A6�

for k=0, . . . ,N.
The actual iteration upon entering the stage �M +1� would

proceed as follows. We first start with the lowest allowed
value of NM+1�=0�, and then increase it in steps of 1. Within
a given KN subspace, we construct the matrix

H�R;R�� � M+1�N,R�HM+1�N,R��M+1. �A7�

Diagonalization of this matrix gives a set of eigenstates

�N,�N�M+1 = �
R

UN��N;R��N,R�M+1, �A8�

where UN will be an orthogonal matrix. The diagonalization
means not more than the knowledge of ER,M+1�N� and
UN��N ;R�. After completing the diagonalization for one N,
we proceed up, increasing N in steps of 1. In order to go
to the next iteration we need to calculate M+1�N
−1,����b̄M−1��N ,��M+1. Using the results in Eq. �A4�, it is
easy to verify that

M+1�N − 1,�N−1� ��bM−1��N,�N�M+1

= �
R

UN−1��N−1� ;R�UN��N;R��k , �A9�

where k is the number of particles on the M −1 site in the
chain as given in the Eq. �24�.

APPENDIX B: CALCULATION OF LOCAL
SPECTRAL DENSITY

The NRG method uses a discretized version of the Ander-
son model in a semi-infinite chain form in Eq. �15�. The
resulting spectral functions will therefore be given as a set of
discrete 
 peaks. For example, the spectral representations of
the one-particle Green’s function G�z� is

A��� = −
1

�
IG���

= �
N,r

�
N�,r�

��N,r��b†��N�,r���2

 exp
− �E�N,r��  

� − E�N,r� + E�N�,r���

− �
N,r

�
N�,r�

��N,r��b��N�,r���2exp
− �E�N,r��

 

� + E�N,r� − E�N�,r��� , �B1�

where �N ,r� and E�N ,r� are the abbreviation of �N ,r�M and
EM�N ,r� in Eq. �22�.

As a practical matter, however, calculating the states of
HM for large N is hard to deal with because the number of
N-particle states of HM explodes in combinatorial way as
shown in Eq. �18�. Thus we introduce cutoff,
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�
N

→ �
N=0

Nmax

. �B2�

The value of Nmax has to be larger than the minimum point of
the ground-state energy at N=N�.

At zero temperature, the ensemble average in Eq. �B1� is
replaced to the ground expectation value �N� ,0�¯ �N� ,0�

A���T=0 = −
1

�
IG���T=0

= �
r

��N� + 1,r�b†�N�,0��2

� − E�N� + 1,r�

+ E�N�,0�� − �
r

��N� − 1,r�b�N�,0��2

 

� + E�N� − 1,r� − E�N�,0�� . �B3�

The matrix elements �N ,r��b†��N� ,r�� and the energies
E�N ,r� are calculated in the NRG method. The resulting
spectral function, as a set of 
 functions at frequencies �n
with weights gn, are broadened on a logarithmic scale as

gn
�� − �n� → gn
e−bn

2/4

bn�n
��

 exp�−
�ln � − ln �n�2

bn
2 � . �B4�

In our calculations, the width bn is chosen as b independent
of n and the typical values we use are in the range 0.01
�b�0.1. A 
 peak in Fig. 10�a� is an intrinsic 
 peak with-
out any resonance, for which we use a value bn=0.0001.
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